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ABSTRACT 

Using the information transfer extensions to the Take-Grant Protection 
Model, the concept of “theft of information” is defined and necessary 
and sufficient conditions for such theft to occur are presented, as well as 
bounds on the number of actors involved in such theft. Finally, the 
application of these results to reference monitors are explored. 

1. Introduction 
The terms security and safety are often used interchangeably; in fact, they are not 

synonyms. The term “safe” applies to an abstract model; its initial state is called 
“safe” if it is not possible to reach a new state in which a right can be transferred. 
The term “secure” applies to a nonabstract system; it requires not only that the 
abstract model of the system be safe, but also that the nonabstract system correctly 
implement the abstract model. Harrison, Ruzzo, and Ullman showed that in general, it 
cannot be determined whether or not a system is safe [4].. The Take-Grant model, 
developed as a theoretical model to test the limits of this result [5 ] ,  describes a simpler 
type of system, called a mrw-operational system (because each command performs a 
single primitive operation). For such systems, there is an algorithm that decides 
whether a given mono-operational system and initial state is safe for a generic right. 
In fact, safety in the Take-Grant system is not only decidable even if the number of 
objects which can be created is unbounded, but it is decidable in time linear in the size 
of the graph. In[7] , the results were extended to include the theft of rights; in[21 , the 
notion of information flow was introduced and necessary and sufficient conditions for 
information sharing were formulated. 

This paper extends this work. In the next two sections, we review the rules 
governing transfer of rights and information within the model, as well as some of the 
consequences of those rules. Next, we define, and present necessary and sufficient 
conditions for, the theft of information; following that, we present bounds on the 
number of actors needed for information to be shared (or stolen). We then discuss the 
implications of our work, and show how it can be applied in practise to reference 

This work was supported in part by grant NAG 2-480 fm the National Aeronautics and Space Administration to Dart- 
mouth College, and a Burke award from Dartmouth Collegc 



- 2 -  

monitors. Finally, we suggest areas for future reseatch. 

2. Transfers of Authority 
Let a finite, directed graph called a protection gruph represent a system to be 

modelled. A protection graph has two distinct kinds of vertices, called subjects and 
objects. Subjects are the active vertices, and (for example) can represent users; they 
can pass information and authority by invoking gruph rewriting rules. Objects, on the 
other hand, are completely passive; they can (for example) represent files, and do noth- 
ing. 

In protection graphs, the subjects are represented by and objects by 0. Ver- 
tices which may be either subjects or objects are represented by C3 Pictures are very 
often used to show the effects of applying a graph rewriting rule on the graph; the 
symbol I- is used to mean that the graph fobwing it is produced by the action of the 
graph rewriting rule on the graph preceding it. The symbol c* represents several rule 
applications. The term witness means a sequence of graph rewriting rules which pro- 
duce the predicate or condition being witnessed, and a witness is often demonstrated 
by listing the graph rewriting rules that make up the witness (usually with pictures.) 

The edges of a protection graph are labelled with subsets of a finite set R of 
rights. Suppose that (r,w,t,g) R ,  where r, w, t, and g represent read, write, rake, 
and grant rights, respectively. When written as labels on a graph, the set braces are 
normally omitted. 

The Talcexrant Model permits users with certain rights to transfer rights from 
one vertex to another. The rules governing the transfer of rights are called de jure 
rules and are as follows : 
take: Let x, y, and z be three distinct vertices in a protection graph Go, and let x be a 

subject. Let there be an edge from x to y labelled y with t E ‘y, an edge from y 
to z labelled p, and a E p. Then the take rule defies a new graph G I  by adding 
an edge to the protection graph from x to z labelled a. Graphically, 

x Y Z X Y Z 

The rule is written: “x takes (a to z) from y.” 
grant: Let x, y, and z be three distinct vertices in a protection graph Go, and let x be 

a subject. Let there be an edge from x to y labelled y with g E y, an edge from x 
to z labelled p, and a p. Then the grunt rule defines a new graph G i  by 
adding an edge to the protection graph from y to z labelled a. Graphically, 

Z X Y Z X Y 
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The rule is written: “x grants (a to z) to y.” 
create: Let x be any subject in a protection graph Go and let a be a subset of R. 

Create defines a new graph GI by adding a new vertex y to the graph and an 
edge from x to y labelled a. Graphically, 

a 
O C  
X X Y 

The rule is written: “x creates (a to new vertex) y.” 
remove: Let x and y be any distinct vertices in a protection graph Gi such that x is a 

subject. Let there be an explicit edge from x to y labelled p, and let a be any 
subset of R .  Then remove defines a new graph GI by deleting the a labels from 
p. If p becomes empty as a result, the edge itself is deleted. Graphically, 

P, c P** 
X Y X Y 

The rule is written: “x removes (a to) y.” 
The edges which appear in the above graphs are called explicit because they 

represent authority known to the protection system. 
Note that there is a duality between the take and grant rules when the edge 

labelled t or g is between two subjects. Specifically, with the cooperation of both sub- 
jects, rights can be transmitted backwards along the edges. The following two Iem- 
mas[5] demonstrate this: 
Lemma 1: 

X Y X Y 

Lemma 2: 

As a result, when considering the transfer of authority between subjects, neither 
direction nor label of the edge is important, so long as the label is in the set ( t ,g) .  

The first question that comes to mind is under what conditions can rights be 
shared? To answer this question, we first need to examine some characteristics of 
take-grant graphs. 
Definition: A rg-path is a nonempty sequence vo, . . . , vk of distinct vertices such that 
for all i ,  O l i < k ,  vi is connected to vi+i by an edge (in either direction) with a label 
containing t or g. 



- 4 -  

Note that the vertices in a tg-path may be either subjects or objects. 
Definition: Vertices are tg-connected if there is a tg-path between them. 
Definition: An island is a maximal tg-connected subject-only subgraph. 

Any right that one vertex in an island has can be obtained by any other vertex in 
that island. In other words, an island is a maximal set of subject-only vertices which 
possess common rights. 

With each tg-path, associate one or more words over the alphabet { t ,  t ,  g , g } 
in the obvious way. If the path has length 0, then the associated word is the null word 

Definition: A vertex v o  initially spans to vk if v o  is a subject and there is a tg-path 
between v o  and vk with associated word in { t ,  g } u {v}. 
Definition: A vertex vo terminally spans to vk if v o  is a sub- 
ject and there is a tg-path between vo and vk with associated word in { ?* }. 

++-+ c 

V. 

+ +  

Definition: A bridge is as-path with vo  and vk  both subjects and the path’s associ- 
ated word in { 7*,?,7*gt*, t * g t *  }. 

+ *  

An initial span is a tg-path along which the first vertex in the path can transmit 
authority; a terminal span is a tg-path along which the first vertex in the path can 
acquire authority. A bridge is an edge along which a right can be passed, possibly by 
using lemma 1 and 2 as well as the de jure rules. As a note, a bridge is said to be 
directed awuyfrorn vo. The following diagram illustrates these terms: 

i 
u V W X Y 

islands: 
bridges: 
initial span: 
terminal span: 

I1={p ,u }J2={w },Is={y ,s’l 
u ,v ,w and w ,x ,y 

p with associated word: v-, 
s’,s with associated word: t 

The following predicate formally defines the notion of transferring authority: 
Definition: The predicate can.shure(a, x, y, Go) is true for a right a and two vertices 
x and y if and only if there exist protection graphs GI, . . . ,Gn such that GoC* Gn 
using only de jure rules, and in Gn there is an edge from x to y labelled a. 

In short, if x can acquire a rights to y, then can.share(a, x, y, Go) is true. The 
theorem which establishes necessary and sufficient conditions for this predicate to hold 
is [6]:  
Theorem 3: The predicate can.shure(a, x, y, Go) is true if and only if there is an 
edge from x to y in Go labelled a, or if the following hold simultaneously: 

there is a vertex s E Go with an s-to-y edge labelled a; (i) 
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(ii) there exists a subject vertex p’ such that p’=p or p’ initially spans to x; 
(iii) there exists a subject vertex s’  such that s’=s or s ’  terminally spans to s; 

and 
(iv) there exist islands 11, . . . ,I” such that p’ is in 11, s’  is in I “ ,  and there is a 

Finally, if the right can be transferred without any vertex which has that right 
applying a rule, the right is said to be stolen. Formally: 
Definition: The predicate can*steal(a, x, y, Go) is true for a right a and two vertices 
x and y if and only if there there is no edge labelled a from x to y in Go, there exist 
protection graphs G I ,  . . . ,Gn such that GoC* Gn using only de jure rules, in Gn 
there is an edge from x to y labelled a, and if there is an edge labelled a from s to q, 
then no rule has the form “s grants (a to q) to z” for any x E G j ,  (1 I j < n ) .  

Esentially, this says that can*steal is true if canoshare is true, the right did not 
exist initially, and no owners of the right in the initial graph gave it away. Necessary 
and sufficient conditions for this to be true are [7]: 
Theorem 4: The predicate can*steal(a, x, y, Go) is true if and only if the following 
hold simultaneously: 

bridge from I j  to Ij+l (1 S j  CV). 

(i) there there is no edge labelled a from x to y in Go; 
(ii) there exist a subject vertex p’ such that p’=p or p’ initially spans to x; and 
(iii) there is a vertex s with an edge from s to q labelled a in Go; and 
(iv) can*share(t, p, s, Go) is true. 
These rules apply only to the transfer of rights. But information may be 

transferred without any transfer of rights. Let us now examine this question. 

3. Transfers of Information 
The de jure rules control the transfer of authority only; they say nothing about 

the transfer of information. The two are clearly different; for example, if a user is 
shown a document containing information which he does not have authority to read, 
the information has been transfered to the user. The de jure rules do not model cases 
like this. Instead, we use a different set of rules, called de facto rules, to derive paths 
along which information may flow. 

In order to describe transfers of information, we cannot use explicit edges, 
because no change in authority occurs. Still, some indication of the paths along which 
information can be passed is necessary. Hence, we use a dashed line, labelled by r, to 
represent the path of a potential de facto transfer. Such an edge is called an implicir 
edge. Notice that implicit edges cannot be manipulated by the de jure rules, since the 
de jure rules can affect only authorities recorded in the protection system, and implicit 
edges do not represent such authority. 

A protection graph records all authorities as explicit edges, so when a de jure rule 
is used to add a new edge, an actual transfer of authority has taken place. But when a 
de facto rule is used, a path along which information can be transferred is exhibited; 
the actual transfer may, or may not, have occurred. It is impossible to tell this from 
the graph, because the graph records authorities and not information. For the purposes 
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of this’ model, however, we shall assume that if it is possible for information to be 
transferred from one vertex to another, such a transfer has in fact occurred. 

One set of proposed de facto rules was introduced in[2] to model the transfer of 
information. Although these are not the only rules possible, their effects have been 
explored, and so we shall use them. 
posr: Let x, y, and z be three distinct vertices in a protection graph Go and let x and z 

be subjects. Let there be an edge from x to y labelled 
edge from z to y labelled p, where w E p. Then the 
graph GI with an implicit edge from x to z labelled ( r ) .  

r .................. 

V L V  -_ 
Y Y 

pass: Let x, y, and z be three distinct vertices in a protection 

a, where r E a, and an 
posr rule defines a new 
Graphically, 

graph Go, and let y be a 
subject. Let there be an edge from y to x labelled a, where w E a, and an edge 
from y to z labelled p, where r E p. Then the puss rule defines a new graph G I  
with an implicit edge from x to z labelled [ r ) .  Graphically, 

” 
Q q v J b v  .................. 

-_ 
Y Y 

spy: Let x, y, and z be three distinct vertices in a protection graph Go, and let x and y 
be subjects. Let there be an edge from x to y labelled a, where r E a, and an 
edge from y to z labelled p, where r E p. Then the spy rule defines a new graph 
G 1 with an implicit edge from x to z labelled ( r ) .  Graphically, 

r .................. 

V ’ V  1. 

Y Y 

find: Let x, y, and z be three distinct vertices in a protection graph Go, and let y and z 
be subjects. Let there be an edge from y to x labelled a, where w E a, and an 
edge from z to y labelled p, where w E p. Then the find rule defines a new 
graph G I  with an implicit edge 

v 
from x to z labelled ( r ) .  

................... 
L V  

Graphically, 

Y Y 
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I Note that these rules add implicit and'not explicit edges. Further, as these rules 
model information flow, they can be used when either (or both) of the edges between 
x and y, or y and 2, are implicit. 

3.1. Information Flow in a Graph with Static Rights 
Now, consider the conditions necessary for a potential de facto transfer to exist in 

Definition: The predicate can.know.f(x, y, Go) is true if and only if there exists a 
sequence of graphs G 1, . . . , Gn (0 2 n ) ,  such that Gi c* Gi+l (0 5 i < n ) by one of the 
de facto rules and in Gn either aN x-to-y edge labelled r exists or a y-to-x edge 
labelled w exists and if the edge is explicit, its source is a subject. 

Intuitively, can.know.f(x, y, Go) is true if and only if x has the authority to read 
y, y has the authority to write to x, or an iniplicit edge from x to y can be added by 
means of the de facto rules. Note the duality of read and write. If x can write to y, 
then y effectively can read x. All x has to do is write to y any information that y 
wants to see. This duality will play an important role in later results. 
Definition: An rw-path is a nonempty sequence v 0, . . . , v k of distinct vertices such 
that for all i, OIi < k ,  vi  is connected to vi+i by an edge (in either direction) with a 
label containing an r or a w. 

With each rw-path, associate one or more words over the alphabet { ?, F, i?, 6 } 
in the obvious way; for instance, the protection graph 

a graph. 

has associated #?"F and #7@. If the path has length 0, then the associated word is 
the null word v. 
Definition: An rw-path vo, . . . , V A ,  k21, is an admissible rw-path if and only if it 
has an associated word a la2 0 - ak in the regular language (rjuk)*, and if ai =? 
then vi-i is a subject and if ai =&J then v i  is a subject. 
Note that there cannot be two consecutive objects on an rw-admissible path. Given 
these definitions, 
Theorem 5: Let x and y be vertices in a protection graph Go. Then can.know.f(x, y, 
Go) is true if and only if there is an admissible rw-path between x and y. 

3.2. Information Flow in a Graph with Changing Rights 
These results can be extended to include both de jure and de facto rules. To do 

so, we must define terms combining characteristics of those used in both the de jure 
and de facto developments. 
Definition: The predicate can~know(x, y, Go) is true if and only if there is a sequence 
of protection graphs GI, . . . ,Gn such that GoC* Gn and in Gn either a x-to-y edge 
labelled r exists, or a y-to-x edge labelled w exists and, if the edge is explicit, its 
source is a subject. 
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This is merely canoknowof(x, y, Go) without the restriction on the types of rules 
used. 
Definition: An rwtg-path is a nonempty sequence vo, . . . ,vk  of distinct vertices 
such that for all i ,  Olick, v i  is connected to vi+i by an edge (in either direction) with 
a label containing a t ,  g, r, or a w. 

With each rwtg-path; associate one or more words over the alphabet 
{ t ,  t ,  g ,  g ,  P, F, i3, f~ } in the obvious way. 
Definition: The vertex YO rw-initially spans to v k  if v o  is a subject and there is an 
rwtg-path between vo and vk with associated word in { T*i2 }. 
Definition: A vertex v o  rw-terminally spans to vk if v o  is a subject and there is an 
rwtg-path between vo and vk with associated word in { T*F' }. 
Definition: A bridge is an rwtg-path with associated word in the regular language 

B =  { T* UT* u t * g t *  u t * g t *  } 

(Note that this is the same as the definition given earlier in this section.) A connection 
is an rwtg-path with associated word in the regular language 

The next result characterizes the set of graphs for which can~know is true: 
Theorem 6: canoknow(x, y, Go) is true if and only if there exists a sequence of sub- 
jects u I, . . . , Un in Go ( l a )  such that the following conditions hold: 

+ e + +  

++ + w  

c= { 7*P u @7* u7**7* } 

(i) u 1 = x  , or u 1 rw-initially spans to x, 
(ii) u n = y , or u n rw-terminally spans to y, 
(iii) for all i , 1 I i n , there is an rwtg-path between u i and u i + l  with an asso- 

ciated word in B UC . 
In order to appreciate these results, let us now look at some examples of the uses 

of the rules and theorems; these will be useful in deriving our later results. 

4. Some Examples of Combined de jure and de facto Rule Applications 
In this section we present results which not only are good examples of how the 

graph rewriting rules and the theorems in the previous sections are used, but also 
which will be quite useful in our later work. The first two results are quite basic, and 
state that that if one subject has take or grant rights over another subject, either can 
(with the co-operation of the other) read information from the other. More formally: 
Lemma 7: 

X Y X Y 

proof: First, y creates (TW to new vertex) z: 
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Then, x takes (w to z) from y: 

c 

M 

Finally, x and y use the post rule: 

..I.. . . I- 

M 

Note that the direction of the implicit read edge depends on which rights x and y use. 
If x writes to z and y reads from z, the implicit edge (information flow) goes from x 
to y. If, on the other hand, y writes to z and x reads from z, the implicit edge (infor- 
mation flow) goes from y to x. 0 
Lemma 8: 

X Y X Y 

Proof: First, x creates (nu to new vertex) z: 

& % L & 4 - % 9  
X Y z X Y 

Then, x grants ( M  to z) to y: 

Finally, x and y use the post rule: 
0 

As with the previous lemma, note that the direction of the implicit read edge depends 
on which rights x and y use. 0 

Next, we consider the following question: suppose we have a graph with three 
vertices; two subjects x and y, and another vertex z which may be either a subject or 
an object. There is a path from x to z and a path from y to z; these are the only paths 
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in the graph. Furthermore, these paths may be initial, terminal, rw-initial, or rw- 
terminal (any combination is possible.) Our problem is to derive witnesses to 
canokmw(x, y, G )  for those combinations of paths for which that predicate is true, and 
prove that predicate is false for the others. 

The easiest way to do this is to consider each combination of paths. First, if the 
path from x to z is nv-terminal, it does not matter whether or not z is a subject or an 
object; if the former, the word associated with the x-to-z path is not in the set BuC, 
and if the latter, the word associated with the x-to-y path is not in the set BuC either. 
In those four cases can.kmw(x, y, G )  is false by condition (iii) of theorem 6. If the 
path from y to z is rw-initial, similar reasoning shows that, again, can*know(x, y, G )  
is false. 

Let us now consider the remaining cases one by one. Throughout the remainder 
of this discussion, we will assume that initial, terminal, rw-initial, and rw-terminal 
paths all are of length 1. We may do so without loss of generality because if the path 
is longer, all edges but the first are take edges, and so by repeated applications of the 
take rule the vertex at the source of the directed path may obtain an edge with the 
rights of the last edge in the path. We shall also not draw the pictures as we did in 
the two previous lemmas. 
x-to-z terminal, y-to-z terminal 

First, if z is an object, the word associated with the path between x and y is not 
in B u C  and therefore the predicate is false. But if z is a subject, the following 
is a witness: 
(1) z creates (nv to new vertex) v. 
(2) x takes (t to v) from z. 
(3) y takes (w to v) from z. 
(4)  y and x use the post rule to obtain an implicit r edge from x to y .  

This verifies can.know(x, y, G). Note that all three vertices x ,  y, and z must act. 
x-to-z terminal, y-to-z initial 

In this case it is not relevant whether z is an object; the following witness works 
in either case. 
(1) y creates (nv to new vertex) v. 
(2) y grants (r to v) to z. 
( 3 )  x takes (t to v) from z. 
(4) y and x use the post rule to obtain an implicit t edge from x to y .  

This verifies can.know(x, y, G). In this case, only x and y need act. 
x-to-z terminal, y-to-z rw-initial 

If z is an object, the word associated with the path between x and y is not in 
BuC and therefore the predicate is false. But if z is a subject, the following is a 
witness: 
(1) z creates (rw to new vertex) v. 
( 2 )  x takes (r to v) from z. 
( 3 )  x and z use the post rule to obtain an implicit r edge from x to z. 
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(4) y and x use the post rule to obtain an implicit r edge from x to y .  
This verifies can.kmw(x, y ,  G). As in the first case we looked at, x ,  y ,  and z all need 
to act. 
x-to-z terminal, y-to-z initial 

The following witness works whether or not z is a subject: 
(1) x creates (rw to new vertex) v. 
(2 )  x grants (w to v) to z. 
( 3 )  y takes (w to v) from z. 
(4) y and x use the post rule to obtain an implicit r edge from x to y .  

This verifies can.know(x, y ,  G). Again, note that only x and y need act. 
x-to-z terminal, y-to-z rw-initial 

If z is an object, the word associated with the path between x and y is not in 
BuC and therefore the predicate is false. But if z is a subject, the following is a 
witness: 
(1) z creates (rw to new vertex) v. 
(2) x takes (r to v) from z. 
( 3 )  x and z use the post rule to obtain an implicit r edge from x to z. 
(4) y and x use the post rule to obtain an implicit r edge from x to y .  

This verifies can.krww(x, y ,  G). As in the first case we looked at, x ,  y ,  and z all need 
to act. 
x-to-z initial, y-to-z terminal 

The following witness works whether or not z is a subject: 
(1) x creates (TW to new vertex) v. 
( 2 )  x grants (w to v) to z. 
( 3 )  y takes (w to v) from z. 
(4) y and x use the post rule to obtain an implicit r edge from x to y .  

This verifies cun.know(x, y, G). Again, note that only x and y need act. 

Now that we have seen the basic model, let us consider the question of theft of infor- 
mation. 

5. Snooping, or the Theft of Information 
Up to this point, we have been considering cases where all vertices cooperate in 

sharing information, so all de facto rules may be applied with impunity. Suppose this 
is not true; suppose a vertex which has the right to read information from another ver- 
tex flatly refuses to pass the information along. Under what conditions can a vertex 
which does not have read rights over a second vertex obtain information from the 
second vertex? 

An example will help show what the problem is. Suppose Alice works for a firm 
which has proprietary information that its competitors need desperately to see. Alice, 
who works with this information quite a bit, has the authority to read the documents 
containing the proprietary information whenever she likes, with the understanding she 
is not to pass this sensitive data to anyone else, including co-workers. The situation, 
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in Take Grant terms, is: 

0 

Go 
Alice data 

0 
co-workers 

Any documents as sensitive as those which Alice consults must be kept under 
lock and key. Alice’s company has a large vault, which is opened by a key that Alice 
has. One of her co-workers, Bobby, is not cleared to read these documents and does 
not have a key to the vault. While passing Alice’s desk, he notes a key lying on top 
of it. Were Bobby to take that key, he would be “taking” Alice’s right to read the 
documents, because she could no longer open the vault; in effect, he would have illi- 
citly obtained the right to read those documents. He could also pass this information 
on to someone else. This is an example of Alice’s sharing (albeit unknowingly) her 
right to read the documents: 

a 

0 
co-workers 

Because he is honest, Bobby does not take the key, but merely suggests to Alice 
that she be a bit more careful. Later in the day, Alice takes a sensitive document out 
of the vault, goes back to her desk, and begins to read the document. Unfortunately, 
Robin, who sits directly behind Alice in her office, can see what Alice is reading just 
by looking over Alice’s shoulder. In Take Grant terms, this situation is: 

0 

G2 0 . 0  ....... r r 
Robin A m a  

0 
co-wor kers 

By the spy rule, Robin can read anything Alice can (the Robin-to-Alice edge, being 
unauthorized, is implicit); hence, can~know(Robin, “proprietary data”, G2) is true as 
long as Robin can look over Alice’s shoulder; if Alice read the document elsewhere, 
such as in the vault, Robin would no longer be able to read the document over Alice’s 
shoulder, so the spy rule would not be applicable since there would be no (implicit or 
explicit) Robin-to- Alice edge. Notice the difference between canoknow(Robin, 
“proprietary data”, G2) and canoknow(Bobby, “proprietary data”, G I); in the latter 
case, the canoknow is true whether or not Alice cooperates by (knowingly or unknow- 
ingly) allowing her shoulder to be looked over. The canoknow predicate fails to cap- 
ture this distinction. 
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We define a new predicate, called canmoop. This predicate will be true if 
canoknow is true and no-one who has any rights over the information being snooped 
for cooperates with the snooper. For example, canosnoop(Robin, “proprietary data”, 
G2) is false, since Alice has to pass the information to Robin (by letting Robin look 
over her shoulder, in this example), whereas can.snoop(Bobby, “proprietary data”, 
GI) is true, since Bobby could see the documents whether or not Alice cooperated, 
once Bobby had “taken” them. 

Definition: The predicate canwwop(p, q, Go) is true if, and only if, can*steal(r, p ,  q, 
Go) is true or there exists a sequence of graphs and rule applications G o b l  * h,Gn 
for which all of the following conditions hold: 

More formally, 

(a) there is no explicit edge from p to q labelled r in Go; 
(b) there is an implicit edge from p to q labelled r in Gn; and 
(c) neither q nor any vertex directly connected to q is an actor in a grant rule or 

a de facto rule resulting in an (explicit or implicit) read edge with q as its 
target. 

Before we state necessary and sufficient conditions for cun*snoop to be true, let 
us examine the definition more closely. The predicate is rather clearly the de facto 
analogue of canasteal, just as canokrww is the de facto analogue of canoshare. If p 
can steal read rights to q, clearly no-one who owns those rights over q can prevent p 
from obtaining information from q. Similarly, if p has authority to read q, it would 
strain the meaning of what we are trying to define to say can*snoop(p, q, Go) is true. 
In Gn, if canosteal(r, p, q, Go) is false, note that any read edge from p to q must be 
implicit. And for the purposes of this discussion, we will assume that q will not 
cooperate (either wittingly or unwittingly) with any snooping; it would be equally rea- 
sonable to assume that q would cooperate, in which case what follows must be 
modified somewhat. 
Theorem 9: For distinct vertices p and q in a protection graph Go with explicit edges 
only, can.snoop(p, q, Go) is true if and only if one of the following conditions holds: 

(i) canasteal(r, p, q, Go) is me; or, 
(ii) all of the following hold simultaneously: 

(a) there is no edge labelled r from p to q in Go; 
(b) there is a subject vertex p’  such that p ’  = p or p ’  rw-initially spans to 

P ;  
(c) there is a subject q ’ such that q ’ # q , there is no edge labelled r from 

q’ to q in Go, and q’ rw-terminally spans to q; and 
(d) can.know(p’, q”, Go) is true. 

Informal argument: If canesnoop is true, and canasteal false, we have to show all parts 
of condition (ii) are true. Condition (ii)(a) follows from the definition. By part (b) of 
the definition, can.know(p, q, Go) is true, from which condition (ii)(b) springs. Also, 
by theorem 6, condition (ii), we have q’. Combining this with the definition, it 
becomes clear that although q’  rw-terminally spans to q, q ’  f q , and there is no edge 
labelled r from q’ to q in Go. The proof that can*know(p, q, Go) is true involves 
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proving that the first rule to add a read edge with target q is a take rule, and working 
backwards. 

hool: (a) Let can.snoop(p, q, Go) be true. If can.steal(r, p ,  q, Go) holds, we are 
done. So, assume can.sreal(r, p, q, Go) is false. 

Going from the conditions to canwmop is trivial. 

Part (a) of the definition gives condition (ii)(a) of the theorem. 
By part (b) of the definition, there is an implicit read edge from p to q in Gn, 

whence by definition can.know(p, q, Go) is true; so, condition (ii)(b) of this theorem 
results from condition (i) of theorem 6. 

By condition (ii) of theorem 6, there is a subject q’ such that q’ # q or q’ rw- 
terminally spans to q. If q is an object, we can take q’ to be the q’ in condition (ii)(c) 
of this theorem. If q is a subject, by part (c) of the definition of canwnoop, it is not 
used in the sequence of rule applications witnessing canwwop. Hence, in this case, 
q’ # q; choose q’ in condition (ii)(c) of the theorem to be this q’. Thus, in either 
case, the q’ in condition (ii)(c) of this theorem is the same as the q’ as in condition 
(ii) of theorem 6. 

Assume q’ and q are directly connected by an edge labelled r in Go. Either 
can*shure(t, p’, q‘, Go) is true [which means camstea&-, p, q, Go) is true, connadic- 
tion] or q’ must actively participate in a grant, pass, or spy rule application [contrad- 
icting part (c) of the definition of can~sreal.] In either case, there cannot be an edge 
labelled r from q’ to q in Go. 

It remains to be shown that can.EIIU)w(p’, q’, Go) is true. Let Gobl - * Cp,Gn 
be a minimum length derivation sequence, and let i be the least index such that 
Gi-lCpiGi, there is no explicit or implicit read edge from x to q in Gi-1, and there is 
an explicit or implicit read edge from x to q in Gi-1, where x is any vertex in Gi-1. 
That is, Gi is the first graph in which an edge labelled r with target q is added. Con- 
sider the rule pi which caused this edge to be added. pi cannot be a grant rule since, 
by part (c) of the definition of cano~noop, the owner of r rights to q will not will not 
grant them to anyone else. pi cannot be a pass, spy, or find rule, since by part (c) of 
the definition of can.snoop, the owner of r rights to q will not pass information from 
q to anyone else. pi cannot be a post rule since by part (c) of the definition of 
can.snoop, q will not pass information from itself to anyone else. As neither the 
create nor the remove rules add edges to existing vertices, pi cannot be either. Hence, 
pi must be a take rule. 

We therefore have: 

Recalling that can.know(p, q, Go) is true, by theorem 6 we see that cun*know(p’, 
q, Go) is true. Apply theorem 6 again. By this theorem, there is a subject q ’  such 
that q’ # q or q‘ rw-terminally spans to q. Noting that there is no direct edge labelled 
r from q’ to q in Go, we take q’ = x in theorem 6 and in this theorem, whence 
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can.know(p ’, q ’, Go) immediately follows. 
(e) If condition (i) holds, can~snoop(p, q, Go) is true. 

So, assume condition (ii) holds. Part (a) of the definition is the same as condi- 
tion (ii)(a) of the theorem. By theorem 6, conditions (ii)(b), (ii)(c), and (ii)(d) estab- 
lish part (b) of the definition of canwwop. And as q’ f q when q is a subject, part 
(c) of the definition is also true. This completes the proof of theorem 9. 0 

As an example, let us return to the office described at the beginning of this sec- 
tion. Consider G 1. By theorem 4, can.steal(Bobby, data, G 1) is true, so by condition 
(i) of the above theorem, cun.snoop(Bobby, data, GI) is also true. This conforms to 
our intuition; as we noted earlier, it doesn’t matter whether or not Alice co-operates 
with Bobby. However, in G2, even though can.know(Robin, data, G2) is true, 
can.steal(Robin, data, G2) is false (specifically, in theorem 4, taking p’=Robin, 
s =Alice, and q =data, condition (iv) is false, and in theorem 9, part (ii), taking 
p ’= p =Robin, q ’=Alice, and q =data, condition (c) fails.) So the predicate cun.snoop 
captures the distinction between Alice’s assisting in Robin’s seeing the information, 
and Robin’s seeing the information whether or not Alice co-operates. 

6. Conspiracy in a Single-Path Graph 
Given that we can determine whether knowing, the sharing of information, is pos- 

sible in a take-grant graph, how many vertices must co-operate in the sharing? The 
answer to this question will give us the answer to a more interesting one involving 
snooping, namely how many actors are necessary to steal information. Before we 
tackle these questions in all their generality, let us restrict our attention to a specific 
type of graph. 

Let G be a graph with vertices p, q, with cun.Know(p, q, G )  true, and containing 
only those vertices and edges needed to witness this predicate. Thus, G is composed 
of the path along which information is to be progagated. Let the set of vertices 

and by theorem 6, each edge { Xi-1,Xi }EV is either an edge with associated word in 
BuC,  an rw-terminal span from q’ to q, or an rw-initial span from p’ to p. 

Definition: An uccess set A (y) is defined as 

V = {  x i  I p=xo,p ’=x l , .  . . , X ~ = Q ’ , X ~ + I = Q  } 

We shall now capture the notion of the “reach” of a vertex: 

A (y ) = {y } u {x I y rw-initially or rw-terminally spans to x } u 
{x I y initially or terminally spans to a subject x}.  

y is called thefocus of the access set. 
That is, A (y) is the maximal set of vertices from which y can obtain information, or to 
which y can pass on information by itself. 
Definition: A subject v is an information sink if any one of the following conditions 
holds: 
(i) v =xo, the only word associated with the edge x ox 1 is c ,  g , or P, and there are 

no other edges incident to v; 
(ii) v = x i ,  there are exactly two edges incident to v, and the word associated with 

the edge x i - i x i x i + i  is in the set 

C t  
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(iii) v = X n ,  the only word associated with the edge XnXn+i  is ‘i- or g’; and there are 

The idea here! is that information can be passed into an information sink without the 
sink taking any action, but the only way information can be sent out is if the sink is 
active in a rule application. Notice the sink need not apply the rule; if it does not, it 
must then be a subject in a de facto rule, because unless the subjects shown in those 
rules act, information cannot flow along the implicit edge. This is a subtlety not evi- 
dent when dealing with conspiracies in graphs using only de jure rulesets. 

Definition: An access set cover for G with foci y i ,  . . . , y n  is a family of sets 
A(yi), . . . ,A(yu) where for all i ,  { Xi-1,Xi } ~ A ( y j )  for some j S u .  If the cover 
minimizes u over all possible access set covers, it is said to be a minimal cover. 

Notice that the number of actors needed to implement cun.know generates a 
cover for G.  In fact, 
Lemma 10: A minimal set of actors y 1, . . . , y u  which implement cun.know(p, q G) 
generate an access set cover for G.  
 roof: Let pi, . . . ,pa be a minimal set of rules required for a minimal set of actors 
Y l ,  * * . , y u to implement can.know(p, q G). Let the access sets A (y i), . . . , A  (y 
with foci y i ,  . . . , y n  be defined on G.  Suppose x B A ( y )  for all i .  By definition of 
“access set”, no actor can receive information or rights from, or pass information or 
rights to, x;  hence, x and its incident edges may be deleted without affecting rules 
pi, . . . , pa. But this violates condition (iii) of theorem 6, contradicting the minimal- 
ity of pi, . . . , pa. This proves the claim. 

We next make formal our claim that information sinks must act for information 
or rights to be passed along their incident edges. 
Lemma 11: If vertex x i  is an information sink, and information or rights are passed 
along the path it lies on in a witness to cun.know(p, q, G), then the vertex must be an 
actor. 
Proof: We demonstrate this for the case of x i ’s incident edges being ?and ?; the proof 
for the other cases is similar. (The previous section contains some useful lemmas for 
these proofs.) 

Note first that by condition (iii) of theorem 6, x i  must be a subject (for if not, 
cun.know(p, q, G )  is false because the edges involved in an information sink are nei- 
ther bridges nor connections.) So, assume x i  is not an actor, and consider the effects 
of this on a minimal set of rules pi, . . . ,pa required for a minimal set of actors 
y I,  . . . , yu to implement can.know(p, q, G). 

First, no rules pj are of the form “z takes (01 to y) from x i ”  since x i  has no 
outgoing edges and by the nature of the de jure rules can never be assigned any. As 
the number a of rules is minimal, no rules of the form “z takes (t to x i )  from y” or 
“ x i - i  grants ( t  to x i )  to z” are ever executed since the t right assigned could not be 
used. Hence no de jure rules involve x i  . 

Now consider the de facto rules. Clearly, only information passing through x i  is 
relevant; hence, information will never be written into x i  and not later read (because 

no other edges incident to v. 
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then that rule could be deleted, contradicting the minimality of a), or read before any 
information is written into it (which makes sense only if xi  =xn+i, in which case there 
are two incident edges to xn+i and it is not an information sink, contradiction.) The 
post, pass, and find rules could not be used as xi has no incident write edges, and the 
spy rule could not be used because xi  would have to act, contradicting assumption. 
Hence no de facto rule involves x i. 

Combining these, if xi  is not an actor, it and its incident edges can be deleted 
from G; but this contradicts the minimality of the rule set pi, . . . ,pa. Hence the 
lemma is proved. 

With these two lemmas we are able to obtain a lower bound on the number of 
actors needed to share information: 
Theorem 12: Let k be the number of access sets in a minimal cover of G ,  and let I 
be the number of information sinks. Then k + I  actors are necessary. 
Proor: Let pi, . . . ,pa be a minimal set of rules required for a minimal set of actors 
y 1, . . . , y to implement can.know(p, q, G). Let the access sets A (y I), . . . , A  (y k) 
with foci y 1, . . . , y k be defined over G.  By lemma 10, A (y I), . . . , A  (y k )  at least 
cover G . By lemma 11, every vertex xi  which is an information sink must also be an 
actor. Then A(xi), . . . ,A(xi) are all singleton sets, and each of these vertices is a 
member of its adjacent access sets. Thus these and the other access sets 
A(yi), . . . ,A(yk) constitute an access set cover A(zi), . . . ,A(zk+i) for G (where 
z i = x i ,  . . . , z i  =xi , z i+ i=y  1, . . . , z k + i  =yk.) This proves the theorem. 

Lemma 13: Let A (y I), . . . , A  (y A) be a minimal access set cover for Go ordered by 
increasing indices of x. If can.know(yi+i, q, Go) is true, then for some index rn, there 
exists a graph Gm such that can.know(yi, q, Go) is true and all rules in Go c* G m  
are initiated by y i ,  y i+i ,  and perhaps z =A (y i )  n A  (y i+1). 

Proof: First, recall that we are assuming throughout this section that can.know(p, q, 
Go) is true. Consider the spans to z from yi and yi+i. (See the previous section for a 
detailed analysis of the vertices which must act for information to be passed along 
these spans.) In all cases, the vertices acting in the rule applications are y i ,  yi+i, and 
(occasionally) z. 

Corollary 14: For adjacent access sets A (y i), A (y i+i ,  information can be transferred 
from y i )  to yi+i with no other actors unless there are consecutive edges with their 
only associated words in the set { t t , g g , t w , g w , r t , r g }; in this case additional 
actions performed by z =A (y i )  n A  (y i+i) are sufficient. 
Proor: By inspection of the witnesses to the preceding lemma. 

We can now use these two results to obtain an upper bound on the number of 
vertices which must act to share information: 
Theorem 15: k + I  actors suffice to generate an (implicit or explicit) read edge from p 
to q in G .  
Proof: Clearly p E A  (y 1) and q E A  (y k). Consider first y k and q. Five cases arise: 
0 y k = q . As y k can trivially pass on to q any information it receives, can*know(y k ,  

To derive an upper bound we shall find two lemmas useful: 

* +t ++ ++ +4- ++ 

q, G )  is true. 
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y c  terminally spans to q. By condition (iii) of theorem 6, this means q is a subject, 
so apply lemma 7 to get the desired result. Note that q is an information sink in 
this case. 
y k  initially spans to q. By condition (iii) of theorem 6, this means q is a subject, so 
apply lemma 8 to get the desired result. Note again that q is an information sink in 
this case. 
yk rw-terminally spans to q. Apply the take rule repeatedly to get an explicit read 
edge; this gives the desired result. 
y k  rw-initially spans to q. By conditions (ii) and (iii) of theorem 6, can.know(yk, q, 
G )  is false (if q is a subject, the word associated with the yc-to-q edge is not in 
B u C ,  and if q is an object, yc does not rw-terminally span to it.) This contradicts 
the hypothesis, so yk cannot rw-initially span to q. 

In all cases where can.kmW(yk, q, G) is true, the only actors are the focus of 
A ( y  k )  and, possibly, the vertex q; in addition, q only acts if it is an information sink. 
Applying corollary 14 inductively, we have that whenever camknow@ k, q, G ) is true, 
the only actors are the foci of the relevant access sets and the information sinks. So, 
we now consider how the information is transferred from y i  and p. Again, 5 cases 
arise. 

y 1 = p .  We are done. 
y i  initially spans to p. By condition (iii) of theorem 6, this means p is a subject, so 
apply lemma 7 to get the desired result. Note that p is an information sink in this 
case. 
y i  terminally spans to p. By condition (iii) of theorem 6, this means p is a subject, 
so apply lemma 8 to get the desired result. Note again that p is an information sink 
in this case. 
y i  rw-initially spans to p. Apply the take rule repeatedly to get an explicit write 
edge; then y 1 applies the post rule to obtain the desired result. 
y 1 rw-terminally spans to p. By conditions (i) and (iii) of theorem 6, can*know(y 1 ,  
q, G )  is false (if p is a subject, the word associated with the y1-to-p edge is not in 
B uC, and if p is an object, y 1 does not rw-initially span to it.) This contradicts the 
hypothesis, so y 1 cannot rw-terminally span to q. 

Again, notice that the only actors are the foci of the access sets and (where 

At this point let us take stock of what we have done by working a simple exam- 
present) the infomation sinks. This proves the claim. 0 

ple. Consider the following protection graph: 

P 
d 
X Y Z 

Taking u i = p ,  u2=x ,  u3=z ,  and u4=s, we see can.know(p, q, G )  is true. (Inciden- 
tally, so is canosnoop(p, q, G); take p ’ = p  and q’=z in condition (ii) or theorem 9.) 
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This graph is a single-path graph of the variety we have been discussing, since infor- 
mation flows from q to p along the (sole) path between them. This is demonstrated 
by the following witness to caneknow(p, q, G): 
(1) z takes (r to q) from s; 

(3) p and z use the post rule to add an implicit edge labelled r from p to z; 
(4) p and z use the spy rule to add an implicit edge labelled r from p to q. 
Given this G ,  we may take xo=p,  x i = x ,  x z = y ,  x3=z ,  x4=s, and x s = q .  The 
only information sink here is p (by (i) of the definition.) The access sets of the four 
objects are: 

(2) x grants (r to y) to p; 

A ( p ) = { p  1, 
A(x)={ p , x , y  1, 
A(z)={ y , z , s , q  I, 
A ( s ) = { s , q  1 

It is clear that these four access sets form a cover for G; it is equally clear that 
the middle two sets form a minimal access set cover for G.  Applying theorem 12, 
k =2 and 1 = 1, so a minimum of 3 actors are necessary for information to flow from p 
to q; similarly by theorem 15, 3 actors are sufficient. This agrees exactly with the 
witness presented above, which was in fact composed of a minimal number of rules 
and actors. 

7. Conspiracy in a General Graph 
In the previous section, we restricted our attention to graphs in which caneknow 

was true, and the only edges in the graph were those along which either rights or 
information was transferred. We shall now ease the latter restriction, and consider any 
valid take-grant protection graph in which the predicatecanhow involving the 
relevant vertices is me. Our goal is to derive a bound on the number of actors needed 
to witness the relevant can.know. 

In order to do this, we need to develop an analogue to the protection graph called 
an acting graph. (This is the analogue of the conspiracy graph in[7] with allowances 
made for the de facto rules.) Essentially, this graph connects all actors with other sub- 
jects to which they can pass, or from which they can receive, information and rights. 

Consider first a vertex v in an access set A (x ) with focus x. Basically, there are 
five reasons v may be in A(x): 

v = x ;  
x initially spans to v; 
x rw-initially spans to v; 
x terminally spans to v; or 
x rw-terminally spans to v. 

Define the set A(x ,x ’) to be all vertices in A (x)  n A  (x’) except those z which are 
information sinks and the only reason z is in both A(x) and A(x? is because the 
words associated with the edges x, z and x’, z are those that make z an information 



- 20 - 

sink. A therefore excludes vertices which must act for information to pass along the 
path through that vertex, thereby preventing two foci from being directly connected 
when their only connecting paths contain an information sink. 

Given a protection graph G with subject vertices x i ,  . . . ,xn, we need to gen- 
erate an acting graph G’ with vertices y I, . , . ,yn. Each y i  has associated with it the 
access set A (x i), and there is an undirected edge between y i and y j if A(x i ,x j )  ?t 0. 
We also define two special sets: let 

yp = ( X i  I x i  = p  or X i  rw-initially spans to p ) 
and 

yq = ( x i  I x i = q  or X i  rw-terminally spans to q ) 

Since we intend to use the acting graph to derive a bound, we must first show it 
accurately preserves the notion of sharing information. 
Theorem 16: cunhow(p ,  q, G )  is true if and only if some y u ~ y p  is connected to 
some yvEyq.  
Froor: (e) Assume y. is connected to y v  along the (undirected) path 
Y U  =Y’I, , By construction, yi+i can pass information to y i ,  so by 
induction y can receive information from y v .  Also, as y E y q, y can obtain infor- 
mation from q, and as y u ~ y p ,  Y V  can pass information to p. This means can.know(p, 
q, G )  is true. 
(a) We must consider two cases involving any vertex z in the definition of A above. 

First, we restrict z to being an object of A (x i) n A  (x j). Note that the subjects in 
G correspond to vertices in G‘, and the edges between the vertices in G’ correspond 
to words with components in BuC in G.  So, applying theorem 6, as cun.know(p, q, 
G )  is true, some y U € y p  is connected to some yvEyq. 

Next, assume z is a subject of A (xi) n A  (x j). Let z be associated with y Z .  As 
is a focus (since it is an information sink, and therefore the focus of a singleton access 
set), it clearly has reason to be in A (2) ;  so { z) A(x i ,z) and ( z )  s A(x j ,z). Hence, 
by construction of G’, there are edges between y i and z, and z and y j, so there is still 
a path between y i  and y j  (going through z). Hence y i  and y j  are still connected. 
This proves the theorem. 

Theorem 17: Let Q be the number of vertices on the shortest path from an element 
yutzyp to an element yvtzyq in an acting graph G’. Then to produce a witness to 
cun.kmw(p, q, G), u actors are both necessary and sufficient. 
Proof: 
Necessity: Let y = z I ,  . . . , z =y be vertices along a shortest path from y to y v . 
If there exist only rwtg-connected paths in G from z i  to zi+l  (1 Si < w), the z i are 
foci of an access set cover for the path. By construction of G’ there are no informa- 
tion sinks and if y rw- 
initially or initially spans to p. So, y need not act. A similar argument holds for y v 

and q. By theorem 12, w actors are necessary. 

. ,y  ’k = Y V .  

We may now state and prove the desired result: 

is not associated with p then the subject associated with y 
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Now suppose there is an (induced) path in G’ that is not in G . Even though 
redundent rule applications may occur, clearly duplicated vertices along a span affect 
this thmrem only if they reduce the number of required actors. We show this is not 
possible by contradiction. Suppose that actors z 1, . . . , Zi-l,zi+l, . . . , Z W  could pro- 
duce a witness. Then there is some vertex v E A (z i-1) n A  (Z i+1). By choice of the z i 
vertices being on the shortest path, there is no edge between zi-i and zi+i, so 
v fZi-1, v # Z i + l ,  and v d A(zi-l,zi+l). Hence, if v is an object, there is no word in 
B u C  between zi-i and zi+i, so cun.know is false by theorem 6, whence 
z 1, . . . , zi-i,zi+i, . . . , zw cannot produce a witness. Also, if v is a subject, it must 
be an information sink, in which case it must also be an actor. In either case, the ver- 
tices z i, . . . , zi-i,zi+i, . . . , z w  cannot produce a witness without another vertex 
being added. 
Suficiency: First, as p and q are distinct and all the yi on the shortest path are dis- 
tinct, All spans between these vertices allow the rules described in a previous section 
to be applied provided the foci of the access sets differ from their common elements. 
By inspecting the rules, whenever a focus and a common element do coincide the rule 
whose application is prevented either provides a right already possessed, a right used 
in the subsequent rule application to acquire a right already possessed, or provides an 
implicit edge where one already exists. In these cases the rule application is unneces- 
sary. Noting this, we need only induct on the spans corresponding to the edge of the 
shortest path using lemma 13 to obtain the result. 0 

Let us apply these results to a simple protection graph: 

d w ,  w ,  r - w 
P a b C 

r w ,  r 
S f h i 

- w 

Clearly, p and s are the only information sinks, and the access sets of the subjects 
are: 

A (p )={p ,a 1 
A(b)={a,b} A(h)={f ,h,i} 
A(c)={b,c,d} A(f )={f } 
A (a= {d 1 

A (e)={d ,e ,q ,j 1 

A(s)={s,f 1 
We can construct A(x,y) from these for each pair of subjects x and y; the non-null 
ones are: 

A(p,b)={aI A ( S , f ) = { j l  
A(b,c)={b} A(f ,h)={h} 
A(c ,d ) = {d } A(c ,e)= {d } 

A(d ,e ) = {d 1 
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this means that the acting graph G’ corresponding to the above G is 

P b C d 

S f h 

Now, by theorem 6, can.know(p, q, G )  is true (take n = 5 ,  x = u i = p ,  u2=b ,  u3=c ,  
u4=d ,  and u 5 = e .  Also, in G’, e Eyq and p E yp, so some element of yp is con- 
nected to some element of yq. This illustrates theorem 16. A witness to camknow(p, 
q, G) is: 
(1) e and c use the post rule to add an implicit read edge from e to c; 
(2) e and c use the spy rule to add an implicit read edge from c to q; 
(3) c uses the pass rule to add an implicit read edge from b to q; 
(4) b and p use the post rule to add an implicit read edge from p to b; 
(5) p and b use the spy rule to add an implicit read edge from p to q. 

Four vertices act in this witness, and indeed the shortest path from e to p in G’ 
contains four vertices, just as theorem 17 states. 

Consider now s and q. According to theorem 16, as they are not connected, 
cun.know(s, q, G )  should be false; and indeed as there is no rwtg-path from h to e 
with associated word in B uC, condition (iii) of theorem 6 fails, so can.know(s, q, 
G )  is false, just as we expected. 

8. Applications of the Theory 
Before we discuss security breaches, we must describe security in terms of the 

Take Grant model and its extensions. We should say first a few words about the 
notion of a security policy. 

Breaches of security are defined in terms of a set of rules governing the use (and 
abuse) of a computer system. These rules, called the security policy, define what is 
allowed and what is not allowed. For example, a security policy may require that 
rights to a file be given only by the owner; in this case, if the owner mailed a copy of 
a protected file to another user, no breach of security has occurred even if the recipient 
had no right to see the file. The test of a system’s security is how well it implements 
the policy. 

In this section we examine possible security policies and in particular the rela- 
tionship of an enforcement mechanism to a statement of those policies. 

8.1. Security in Terms of the Predicates 
The first aspect of breaches of security is the illicit transfer of authority. Initially, 

the protection graph has a specific state. Sharing of rights should be permitted when- 
ever authorized by the initial state; however, theft of rights should be barred. This 
way, if a process does not want to share its rights with another, the second cannot take 
those rights. In other words, a right may only be obtained with its owner’s consent. 
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This leads to the condition: 
~canosteaf(a, x, y, Go) for all 01 and all distinct x , y ~ V  

Dealing with information flow is a bit more complex, as a result of the de facto 
rules we use. These rules require the active cooperation of all subjects involved, and 
with one exception (the post rule) each requires two subjects at least one of which has 
access to the information being transferred. 

In this case, the question of what constitutes a “breach of security” depends on 
the intent of the subject with the rights to the information. To take an example, sup- 
pose one process is allowed to read another process’ memory. There are two 
processes, A and B. B has access to a file to which A has no rights. If B reads the 
confidential file, and A reads the memory of B at the same time (thereby seeing the 
contents of the confidential file), has there been a breach of security? 

If B’s intent in reading the file was to make it available to A, then there has been 
no breach of security. All B has done is (indirectly) copied the confidential file into 
another file and changed the protections so A could read it - certainly allowed as B 
can read the confidential file. But if B’s intent in reading the file was simply to see 
what it contained without passing any of its contents on to A, a breach of security has 
certainly occurred, since A has read a file which it had no authority to read. But note 
that A has not violated any restrictions imposed upon it by the system! 

Whether or not this is a security breach depends on the wording of the security 
policy. Either case may be expressed in terms of the predicates described above. We 
may use the restriction 

to indicate that in light of the security policy of the system, A breached security, or 

to indicate that no security breach occurred. 

y c a n w w o p ( x ,  y ,  Go) 

can.know(x, y,  Go) * can.share(r, x,  y ,  Go) 

for all distinct x , y ~  V 

for all distinct x , y ~  V 

8.2. Reference Monitors 

cess meeting three requirements: 
The concept of a reference monitor was first described in[l] as a subject or pro- 

1 the process must be isolated (that is, tamper-proof); 
2 the process must be complete (that is, always invoked when the resource it 

controls is accessed); 
3 the process must be verifiable (that is, small enough to be subject to ana- 

lyses and tests the completeness of which can be ensured). 
In this section, we shall examine reference monitors from the point of view of the 
Take-Grant model and its extensions, in order to demonstrate that the theory done in 
the preceding two chapters may be applied to very general practical aspects of com- 
puter security. Restating these three conditions in terms of our model is quite straight- 
forward. Let the reference monitor be called rn and let the resource it protects be 
called r. The issue of isolation simply means that no-one can write over the monitor; 
this may be stated as ~canoshare( (w ), x , m , Go) for all x SV. The issue of com- 
pleteness may be restated as requiring that m always be invoked to give a subject 
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some rights a over r, which becomes the requirement that for all vertices x E V, only 
m have an edge labelled a to r, and for all vertices x e V  such that x#m, 
-.lcan*steal(a, x ,  r ,  Go). The issue of verifiability is a bit more tricky, since it con- 
sists of two parts. The first, an implementation-level task of verifying that the monitor 
is indeed implemented correctly, is beyond the scope of this paper however, the 
second, which is a verification that no information will leak when the monitor is 
implemented correctly, is simply the security property described above. 

9. Conclusion 
This paper has explored several aspects of information transfer in the Take-Grant 

protection model. The notion of information theft was developed, and then a bound 
on the number of vertices necessary and sufficient to effect an information transfer was 
developed. Finally, as an application of this theory, the theoretical characteristics of 
reference monitors were expressed in terms of those predicates. 

This has several ramifications. The first is that the Take-Grant model, while pri- 
marily a theoretical tool, can be used to model very practical concepts. In[3] , the 
protection model was used to represent hierarchies and derive results parallelling the 
work done earlier by Bell and LaPadula; now, the model has been used to capture the 
key notions of reference monitors. In short, the model can no longer be held to be a 
purely theoretical tool. Clearly, though, much more work needs to be done before its 
practical aspects will be very usable; this is one area for future research. 

A second, related area is to incorporate a notion of “group” into the model. 
Changes of protection state in most computers do not affect a single process (subject) 
or resource (object); they effect several. However, within the Take-Grant Protection 
Model, each rule affects only one subject and one object (the source and target of the 
added implicit or explicit edge.) How the rules might be modified to take these situa- 
tions into account is another open area. 

This leads us to the following question: when the rules are changed to these 
“group rules,” new theorems stating necessary and sufficient conditions for the predi- 
cates caneshare, canesteal, caneknow, and canesnoop to be true will have to be 
derived. It would be most useful if one could derive “meta-theorems” instead, so that 
given a set of rules, one could use the theorem to state necessary and sufficient condi- 
tions for each of those four predicates to be true. This is yet another area for research. 
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